198 research outputs found

    A MULTIDISCIPLINARY DOCUMENTAL REPRESENTATION METHOD FOR KINETIC AND ENVIRONMENTAL ART

    Get PDF
    Abstract. The contribution addresses the definition of a new collaborative documental method for designing and managing the different phases of conservation of kinetic-programmed art. Our approach consists of developing a new representative model that includes both mechanical parts and spatial characteristics. The research stems from a specific case-study, Ambiente – Strutturazione a parametri virtuali (1969) by Gabriele Devecchi, permanently displayed at Museo del '900 in Milan since 2010. Starting from the dimensional and technical data, we obtained a graphical model of lamps 2D and 3D. They were enriched by a detailed abacus describing all the elements and by specific maps capturing all the phases of regular and extraordinary maintenance underwent by the environment. The second part was carried out with a report about physical motion. The goal has been representing speed and geometry of the movement inside the space. By merging the first part of the documenting process and the second one we've got a graphic digital model including information about the individual parts of the installation and their mechanical interaction. The third and last step is ongoing and tackles the challenge of using virtual technologies for the description of the whole environment. Thanks to a collaboration between technicians and theoretic scholars, we attempted to match the study of the physical motion and all data about the structural parts with the careful consideration of historical-artistic and perception-related features. The work led to the conclusion that a virtual, immersive reproduction of the environment is not enough for deeply understanding the experience enjoyed by users inside it, because it misses the embodied perception activated by the artwork. For this reason, this study may be considered as a step in a broader research path about documentation of complex environmental, immersive, kinetic works of art.</p

    Infinite-Dimensional Representations of 2-Groups

    No full text
    A "2-group" is a category equipped with a multiplication satisfying laws like those of a group. Just as groups have representations on vector spaces, 2-groups have representations on "2-vector spaces", which are categories analogous to vector spaces. Unfortunately, Lie 2-groups typically have few representations on the finite-dimensional 2-vector spaces introduced by Kapranov and Voevodsky. For this reason, Crane, Sheppeard and Yetter introduced certain infinite-dimensional 2-vector spaces called "measurable categories" (since they are closely related to measurable fields of Hilbert spaces), and used these to study infinite-dimensional representations of certain Lie 2-groups. Here we continue this work. We begin with a detailed study of measurable categories. Then we give a geometrical description of the measurable representations, intertwiners and 2-intertwiners for any skeletal measurable 2-group. We study tensor products and direct sums for representations, and various concepts of subrepresentation. We describe direct sums of intertwiners, and sub-intertwiners--features not seen in ordinary group representation theory. We classify irreducible and indecomposable representations and intertwiners. We also classify "irretractable" representations--another feature not seen in ordinary group representation theory. Finally, we argue that measurable categories equipped with some extra structure deserve to be considered "separable 2-Hilbert spaces", and compare this idea to a tentative definition of 2-Hilbert spaces as representation categories of commutative von Neumann algebras

    Non-commutative flux representation for loop quantum gravity

    Get PDF
    The Hilbert space of loop quantum gravity is usually described in terms of cylindrical functionals of the gauge connection, the electric fluxes acting as non-commuting derivation operators. It has long been believed that this non-commutativity prevents a dual flux (or triad) representation of loop quantum gravity to exist. We show here, instead, that such a representation can be explicitly defined, by means of a non-commutative Fourier transform defined on the loop gravity state space. In this dual representation, flux operators act by *-multiplication and holonomy operators act by translation. We describe the gauge invariant dual states and discuss their geometrical meaning. Finally, we apply the construction to the simpler case of a U(1) gauge group and compare the resulting flux representation with the triad representation used in loop quantum cosmology.Comment: 12 pages, matches published versio

    Hidden Quantum Gravity in 4d Feynman diagrams: Emergence of spin foams

    Get PDF
    We show how Feynman amplitudes of standard QFT on flat and homogeneous space can naturally be recast as the evaluation of observables for a specific spin foam model, which provides dynamics for the background geometry. We identify the symmetries of this Feynman graph spin foam model and give the gauge-fixing prescriptions. We also show that the gauge-fixed partition function is invariant under Pachner moves of the triangulation, and thus defines an invariant of four-dimensional manifolds. Finally, we investigate the algebraic structure of the model, and discuss its relation with a quantization of 4d gravity in the limit where the Newton constant goes to zero.Comment: 28 pages (RevTeX4), 7 figures, references adde

    Regge calculus from a new angle

    Full text link
    In Regge calculus space time is usually approximated by a triangulation with flat simplices. We present a formulation using simplices with constant sectional curvature adjusted to the presence of a cosmological constant. As we will show such a formulation allows to replace the length variables by 3d or 4d dihedral angles as basic variables. Moreover we will introduce a first order formulation, which in contrast to using flat simplices, does not require any constraints. These considerations could be useful for the construction of quantum gravity models with a cosmological constant.Comment: 8 page

    Bubbles and jackets: new scaling bounds in topological group field theories

    Get PDF
    We use a reformulation of topological group field theories in 3 and 4 dimensions in terms of variables associated to vertices, in 3d, and edges, in 4d, to obtain new scaling bounds for their Feynman amplitudes. In both 3 and 4 dimensions, we obtain a bubble bound proving the suppression of singular topologies with respect to the first terms in the perturbative expansion (in the cut-off). We also prove a new, stronger jacket bound than the one currently available in the literature. We expect these results to be relevant for other tensorial field theories of this type, as well as for group field theory models for 4d quantum gravity.Comment: v2: Minor modifications to match published versio

    Quantum gravity as a group field theory: a sketch

    Full text link
    We give a very brief introduction to the group field theory approach to quantum gravity, a generalisation of matrix models for 2-dimensional quantum gravity to higher dimension, that has emerged recently from research in spin foam models.Comment: jpconf; 8 pages, 9 figures; to appear in the Proceedings of the Fourth Meeting on Constrained Dynamics and Quantum Gravity, Cala Gonone, Italy, September 12-16, 200

    Hidden Quantum Gravity in 3d Feynman diagrams

    Full text link
    In this work we show that 3d Feynman amplitudes of standard QFT in flat and homogeneous space can be naturally expressed as expectation values of a specific topological spin foam model. The main interest of the paper is to set up a framework which gives a background independent perspective on usual field theories and can also be applied in higher dimensions. We also show that this Feynman graph spin foam model, which encodes the geometry of flat space-time, can be purely expressed in terms of algebraic data associated with the Poincare group. This spin foam model turns out to be the spin foam quantization of a BF theory based on the Poincare group, and as such is related to a quantization of 3d gravity in the limit where the Newton constant G_N goes to 0. We investigate the 4d case in a companion paper where the strategy proposed here leads to similar results.Comment: 35 pages, 4 figures, some comments adde

    Group field theory formulation of 3d quantum gravity coupled to matter fields

    Full text link
    We present a new group field theory describing 3d Riemannian quantum gravity coupled to matter fields for any choice of spin and mass. The perturbative expansion of the partition function produces fat graphs colored with SU(2) algebraic data, from which one can reconstruct at once a 3-dimensional simplicial complex representing spacetime and its geometry, like in the Ponzano-Regge formulation of pure 3d quantum gravity, and the Feynman graphs for the matter fields. The model then assigns quantum amplitudes to these fat graphs given by spin foam models for gravity coupled to interacting massive spinning point particles, whose properties we discuss.Comment: RevTeX; 28 pages, 21 figure

    3d Spinfoam Quantum Gravity: Matter as a Phase of the Group Field Theory

    Get PDF
    An effective field theory for matter coupled to three-dimensional quantum gravity was recently derived in the context of spinfoam models in hep-th/0512113. In this paper, we show how this relates to group field theories and generalized matrix models. In the first part, we realize that the effective field theory can be recasted as a matrix model where couplings between matrices of different sizes can occur. In a second part, we provide a family of classical solutions to the three-dimensional group field theory. By studying perturbations around these solutions, we generate the dynamics of the effective field theory. We identify a particular case which leads to the action of hep-th/0512113 for a massive field living in a flat non-commutative space-time. The most general solutions lead to field theories with non-linear redefinitions of the momentum which we propose to interpret as living on curved space-times. We conclude by discussing the possible extension to four-dimensional spinfoam models.Comment: 17 pages, revtex4, 1 figur
    • 

    corecore